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Abstract—Customer relationship management is a popular
and strategic topic in marketing and quality of service. The
availability of big transactions data as well as computing systems
have provided a great opportunity to model and predict customer
behaviour. However, there is a lack of modern modelling and
analytical methods to perform analysis on such data. Deep
learning techniques can assist marketing decision makers to
provide more reliable and practical marketing strategic plans. In
this paper, we propose a customer behaviour prediction model
using recurrent neural networks (RNNs) based on the client
loyalty number (CLN), recency, frequency, and monetary (RFM)
variables. The experiment results show that RNNs can predict
RFM values of customers efficiently. This model can be later
used in recommender systems for exclusive promotional offers
and loyalty programs management.

Index Terms—Customer Behaviour Prediction, Deep Learn-
ing, Recurrent Neural Networks, Recency Frequency Monetary
(RFM), Recommender System, Shopping Pattern.

I. INTRODUCTION

Customer relationship management is an important topic in
marketing and e-commerce. One of the most popular methods
to deal with this challenge is using customer lifetime value
(CLV) model. CLV is defined as the value of relationship with
the current customers, by considering the future cash flows
from the relationship with the customers [1]. Since acquiring
new customers is mostly more expensive than keeping current
customers, the CLV model attempts to manage the long-term
relationships, rather than short-term ones. The decisions are
generally made upon classification of customers to a number of
loyalty classes. Then, marketing decision makers can manage
marketing communication programs through methods such as
personalized advertisements and exclusive promotional offers
[2].

The CLV models use different strategies for customer be-
haviour modelling. One of the most reliable ones is using
the recency (R), frequency (F), and monetary value (M)
variables, called RFM [3], [4], [5]. These variables present
some understanding of customer’s behaviour and try to answer
the following questions: “How recently did the customer
purchase?”, “How often do they purchase?”, and “How much
do they spend?” [2]. RFM variables are sufficient statistics
for customer behaviour modelling and are a mainstay of the
industry because of their ease of implementation in practice
[6], [3]. With the explosion of big-data and availability of
online and offline transaction data, correct modelings of CLV

and prediction of customer behaviour using RFM factors can
results in firm revenues, profitability for the market, and more
loyalty for customers. Utilizing advanced machine learning
techniques is one of the approaches to develop such models.

Some attempts toward customer behaviour prediction are
proposed recently. For restaurant preference prediction, a
model based on artificial neural networks (ANNs) is proposed
in [7]. This model incorporates social media location check-
ins, historical preferences of the customer, the influence of the
customer’s social network, and customer’s mobility character-
istics as inputs to the model. The RFM variables are used in
[8] for finding segments of retailers from a large amount of
Electronic Funds Transfer at Point Of Sale (EFTPOS) transac-
tion data. In [9], the customer purchase behaviour prediction is
made by finding the association among products and exploiting
customer′s motivation. Then the customer preferences for
product features are learned using probabilistic models to
match products to customers. The ANNs are used for RFM
prediction of blood donors in [10]. In this approach, a basic
version of ANNs is used, which considers time as a separate
input variable.

The ANNs have been used for different prediction and
classification applications, including traffic prediction [11],
pistachio nuts classification [12], and phenotype prediction
in genomics [13]. Deep learning models refer to ANNs with
more than one hidden layer. It is a representation technique,
which gives a learning machine the ability to receive raw
data and find its representation for further processing and
decision making. Such machines are made from non-linear but
simple units, which can provide different levels of data rep-
resentation through their multi-layer architecture. The higher
layers provide a more abstract representation of data and
suppresse irrelevant variations [14]. Many naturally occurring
phenomena are complex and non-local sequences such as
music, speech, or human motion. One of the key challenges
in sequence transduction is learning to represent both the
input and output sequences in a way that is invariant to
sequential distortions such as shrinking, stretching, and trans-
lating. The modified version of feed-forward neural networks
(FFNNs) by adding recurrent connections is called recurrent
neural networks (RNNs), which are capable of modelling
sequential data for sequence recognition, sequence production,
and time series prediction [15]. The RNNs are made of
high dimensional hidden states with non-linear dynamics. The
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Fig. 1: A simple recurrent neural network (SRNN) and its unfolded structure through time. To keep the figure simple, biases are not shown.
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Fig. 2: Long short term memory (LSTM) architecture.

structure of hidden states work as the memory of network
and state of the hidden layer at a time is conditioned on its
previous state. This enables the RNNs to store, remember, and
process past complex signals for long time periods and further
decision making. In this way, the RNN can map an input
sequence to the output sequence at the current time-step and
predict the sequence in the next time-step. The handwriting
recognition [16] and speech recognition [17] are examples of
RNN approaches.

Deep learning methods based on RNNs are practical tools
for modelling time-series data. However, such methods have
not been discussed in the literature for RFM or customer value
prediction, to the best of our knowledge. In this paper, for the
first time, a RNN model for customer behaviour prediction
based on the R, F, and M variables are presented. The model
is consisted of one hidden layer with rectified linear units
(ReLU). Since the customer id (also known as client loyalty
number (CLN)) is usually a long integer number, we use an
auto-encoder inside the model to extract features from client
loyalty number and pass the features along with the R, F,
and M values to the learning model as a sequence at time t.
Prediction of the R, F, and M values at time-step t+ 1 is the
target of the learning model.

The rest of paper is organized as follow. Next section
provides an overview on a simple RNN (SRNN). The proposed
model is discussed in Section III. The experiment results are
analyzed in Section IV and the paper is concluded in Section V
and some future research challenges are introduced.

II. RECURRENT NEURAL NETWORKS

A RNN can be seen as a FFNN by unfolding the recurrent
cycles over time. As it is demonstrated in Figure 1, a SRNN
refers to a one step RNN [18]. Generally in order to train
a RNN, we need a training dataset X and a disjoint test
dataset Z. The sets are consisted of input-target paris, where
the objective is to train the network with the training set
X and evaluate it with the test set Z. During the training
procedure, the objective is to train the network (i.e. optimizing
the weights) such a way that the error between the input
and target pairs is minimized. This error is defined by a loss
function as:

L(y, z) =
T∑

t=1

Lt(yt, zt), (1)

where yt is the estimated output.
In general, a SRNN is consisted of input, hidden, and

output layers, where each layer is consisted of corresponding
units, Figure 1a, [19]. The input layer is consisted of N
input units, where its inputs are defined as a sequence of
vectors through time t such as {..., xt−1, xt, xt+1...} where
xt = (x1, x2, ..., xN ). In a fully connected SRNN, the inputs
units are connected to hidden units in the hidden layer,
where the connections are defined with a weight matrix
WIH . The hidden layer is consisted of M hidden units
ht = (h1, h2, ..., hM ), which are connected to each other
through time with recurrent connections. As it is demonstrated
in Figure 1b, the hidden units are initiated before feeding the
inputs. This initialization should address the network state
before seeing the input sequences [20]. It is believed that



Time

Time Interval

Lower Limit Upper LimitPurchase

t3 t4 t6t5t2t1

Time of Interest

Fig. 3: A sample of shopper’s behaviour during different time intervals.

using non-zero elements can improve overall performance and
stability of the network [21]. The hidden layer structure defines
the state space or “memory” of the system, defined as:

ht = fH(ot), (2)

where
ot = WIHxt + WHHht−1 + bh, (3)

and fH(.) is the hidden layer activation function and bh is the
bias vector of the hidden units 1. The hidden units are con-
nected to the output layer with weighted connections WHO.
The output layer has P units such as yt = (y1, y2, ..., yP )
which are estimated as:

yt = fO(WHOht + bo), (4)

where fO(.) is the activations functions and bo is the bias vec-
tor in the output layer. Since the input-target pairs are sequence
through time, the above steps are repeated consequently over
time t = (1, ..., T ) as well.

As Eqs. (2) and (4) show, the RNNs are dynamic systems
with certain nonlinear state equations, which are iterable
through time, [19]. In each timestep, the input vector is
received and the current hidden states are updated to provide
a prediction at the output layer. The hidden state of RNN
is a set of values, which apart from the effect of any external
factors, summarizes all the unique necessary information about
the past states of the network over many timesteps. This
integrated information can be used to define future behaviour
of the network and make accurate predictions at the output
layer, [22]. As the model presents, the non-linearity structure
utilized by each unit is simple; however, this simple structure
is capable of modelling rich dynamics, if it is well iterated
through time.

A. Long-Short-Term Memory (LSTM)

The LSTM model changes the structure of hidden units
from “logistic” or “tanh” to memory cells which their inputs
and outputs are controlled by gates, Figure 2, [19]. This
modification helps the network to learn and remember long-
term dependencies better. Each memory cell is consisted of
four inputs but one output. A typical LSTM cell is made of
input, forget, and output gates and a cell activation component
[19]. These units receive the activation signals from different
sources and control the activation of the cell by the designed
multipliers. The LSTM gates can prevent the rest of the

1The hidden state model in Eq. 2 is sometimes mentioned as ht =
WIHxt + WHHfH(ht−1) + bh, where both equations are equivalent.

network from modifying the contents of the memory cells
for multiple time steps. The LSTM networks preserve signals
and propagate errors for much longer than SRNNs. These
properties allow LSTM networks to process data with complex
and separated interdependencies and to excel in a range of
sequence learning domains. The input gate of LSTM is defined
as:

gi
t = σ(WIgixt +WHgiht−1 +Wgcgigc

t−1 + bgi), (5)

where WIgi is the weight matrix from the input layer to the
input gate, WHgi is the weight matrix from hidden state to
the input gate, Wgcgi is the weight matrix from cell activation
to the input gate, and bgi is the bias of the input gate. The
forget gate is defined as:

gf
t = σ(WIgfxt +WHgfht−1 +Wgcgfgc

t−1 + bgf ), (6)

where WIgf is the weight matrix from the input layer to the
forget gate, WHgf is the weight matrix from hidden state
to the forget gate, Wgcgf is the weight matrix from cell
activation to the forget gate, and bgf is the bias of the forget
gate. The cell gate is defined as:

gc
t = gi

t tanh(WIgcxt +WHgcht−1 + bgc) + gf
t g

c
t−1, (7)

where WIgc is the weight matrix from the input layer to the
cell gate, WHgc is the weight matrix from hidden state to the
cell gate, and bgc is the bias of the cell gate. The output gate
is defined as:

go
t = σ(WIgoxt +WHgoht−1 +Wgcgogc

t + bgo), (8)

where WIgo is the weight matrix from the input layer to the
output gate, WHgo is the weight matrix from hidden state
to the output gate, Wgcgo is the weight matrix from cell
activation to the output gate, and bgo is the bias of the output
gate. The hidden state is computed as:

ht = go
t tanh(g

c
t ). (9)

B. Rectified Linear Units (ReLU)

Gradient of standard nonlinear functions (e.g. sigmoid
function) is one of the main reasons of gradient vanishing
problem. The ReLU is a potential approach to tackle this
problem [23]. The ReLU units can have very large outputs
in RNNs. This may increase probability of gradient exploding
problem comparing to the bounded values. However, by setting
biases to zero and using an identity matrix to initialize the
recurrent weights, it is likely to get comparative solution to
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LSTM [24]. The ReLU computes the output as:

y(x) = max(x, 0), (10)

which leads to faster training and sparser gradients [25].

III. PROPOSED MODEL

The customer shopping is generally recorded as a transac-
tion, summarizing purchase at each visit. Since the transactions
are happening through time, the customer shopping pattern can
be modelled as a time-series discrete phenomena. We develop
this model in the next subsection. Then after computing the
RFM values for each customer to a desired date, the proposed
RNN model in subsection III-B will be trained for RFM
prediction.

A. Customer Shopping Pattern Model

We study the customer behaviour though time with equal
time steps (intervals) as demonstrated in Figure 3. The time
interval can be weekly, bi-weekly, monthly, or etc. Since the
first purchase time among customers is different, we define a
lower limit and upper limit during the time. The lower limit
refers to the start point of our study and the upper limit refers
to the end point of our study through time. In this case, we
can define some equal time intervals between the lower and
upper limits, as shown in Figure 3. The shopper’s purchase
is then identified in each time interval and the R, F, and M
variables are computed with respect to any point of interest.
For example, if the point of interest is at t4, the recency is
the time difference between the last purchase before the time
of interest and the purchase itself. The time difference can
be represented in scale of hour, day, week or etc., depending
on the application. The frequency is the number of conducted
purchases between the lower limit and the time of interest,
which is F = 3 in this example. The monetary is the value
customer has spent on the purchases between the lower limit
and the time of interest. The R, F, and M values are computed
for each customer with a CLN and for all times of interest.

B. Learning Machine Architecture

The proposed RNN model is consisted of one input layer,
one hidden (recurrent) layer, and one output layer. The input
layer is an auto-encoder which extracts features from inputs.
The CLN, R, F, and M values for each customer at each time-
step t are the input sequence to the RNN model presented in
Figure 4. The R, F, and M value of the next time-step t+1 is
shown to the model as target through predefined time intervals.
The time-step t can be set depending on the application. For
example, for grocery stores it can be weekly or bi-weekly and
for sports wear every season.

In general, the CLNs are provided as large integer digits in
transaction data. We use the one-hot encoding method to break
the dependencies between integers. For example, if a store has
50,000 customer, with loyalty numbers starting from 100000,
the one-hot encoded representation for CLN u = 100125
is u = [0, ..., 0, 1, 0, ..., 0]1×50,000, where only the element
number 125 is one and the rest are zero, Figure 4.

The one-hot encoded CLN and binary representation of
Rt, Ft, and Mt are fed to an auto-encoder, which represents
each input vector with a feature representation vector of
fixed length. Each input vector is fully connected to the
representation layer, where WV I is the weight matrix to be
optimized while training the model. The feature representation
is:

v = WV Iu, (11)

where v is the feature representation of each input parameter
CLN, Rt, Ft, and Mt at time t. Then the features are
concatenated such as xt = [v, rt, ft,mt] and fed to the recur-
rent layer. Therefore, the set of weights to be optimized is θ =
{WIH ,WHH ,WHO,WV I−CLN ,WV I−R,WV I−F ,WV I−M ,
bH ,bO} where WV I−CLN , WV I−R, WV I−F , and WV I−M
are the feature representation for the CLN, R, F, and M
values, respectively; bH and bO are biases in the hidden and
output layer, respectively.

By using this trick, the models can learn features of CLN,



TABLE I: Parameters setting of the recurrent neural network model.

Parameter Value
Number of hidden units 250

Number of epochs 1000
Number of auto-encoder features 60

Number of outputs 24
Number of cross validations 10

Time Interval Weekly
L1 0.0001

TABLE II: Performance results of the SRNN, LSTM-RNN and ReLU-RNN
models for the test dataset. The outstanding result is in bold.

Model R F M Total
SRNN 68% 64% 69% 67%

LSTM-RNN 72% 79% 80% 77%
ReLU-RNN 78% 82% 79% 80%

Rt, Ft, and Mt automatically through training procedure.
Since the number of extract features from auto-encoder is
identical for each input parameter, the model provides equal
opportunity for each input representation.

This model is extendable in deeper layer for more abstract
representation. The input vector xt is used as in Eq. 3 to go
through the hidden layer and then the output layer. The output
sequence are the predicted binary R, F, and M variables of the
future time-step which are compared with the target sequence
zt+1 = [Rt+1, Ft+1,Mt+1] to compute the loss value.

IV. EXPERIMENTS

A. Data Set

The data set used in our experiments is ta-feng dataset2,
containing 817,741 transactions belonging to 32,266 users and
23,812 items.

B. Settings

Before training the models, the R, F, and M variables are
computed for each time interval (time-step) and for each CLN.
The data is divided into training (50%), validation (25%), and
test (25%) partitions. The data is shuffled for each experiment.
In order to have the R,F, and M values in same scale, the
data is normalized. The experiments are cross-validated 10
times. A summary of model parameters is in Table I. The
hyper-parameters of the models are selected based on the cross
validation. The regularization coefficient is set to 0.0001. Each
binary representation has 8 bits. Therefore, the number of
target is 3×8=24. Each input parameter is represented with 20
features in auto-encoder. To break the symmetry in weights,
the initial value of connections weights are set to small random
values with uniform distribution. The optimization method is
stochastic gradient descent (SGD) and the mini-batch size is
120.

2http://recsyswiki.com/wiki/Grocery shopping datasets
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Fig. 5: Error of testing dataset for recency (R), frequency (F), and monetary
(M) variables over different time steps for the ReLU and LSTM methods.

C. Performance Analysis

In this subsection we analyse performance of the proposed
RNN with ReLU activation function (ReLU-RNN) model
with LSTM-RNN and SRNN. The performance results on
the test dataset in Table II show that the RNN models have
competitive performance for RFM recommender system. The
ReLU activation function has slightly better performance than
LSTM and SRNN with a total success rate of 80%. The ReLU-
RNN has better performance (i.e. 78%) for the Recency and
(i.e. 82%) the Frequency parameters. This model has a 79%
performance for the Monetary while the LSTM-RNN performs
slightly better with 80%.

Error rate of the LSTM-RNN and ReLU-RNN regarding
long-term dependency through time-steps is presented in Fig-
ure 5. Both plots are scaled for sake of comparison. The
plots show that as the number of time-steps increases, we
observe more error in each time-step. This is mostly due
to the long-term dependency between the data through time.
As the training proceeds toward more time-steps and receives
more new data, it forgets more about past and the total error
increases. We observe that both models are competitive, but
the ReLU-RNN has slightly better error rate. The LSTM shows
a curve-shape behaviour for the Frequency parameter which
should be due to the nature of this parameter through time.



V. CONCLUSION AND FURTHER CHALLENGES

The recency (R), frequency (F), and monetary (M) values
are widely used in industry and academia to model history of
customer behaviour and plan for future marketing strategies.
This paper proposes a new model for RFM prediction of
customers based on recurrent neural networks (RNNs) with
rectified linear unit activation function. The model utilizes an
auto-encoder to represent features of input parameters (i.e.
customer loyalty number, R, F, and M).

The proposed model is the first of its kind in the literature
and has many opportunities for further improvement. The
model can be improved by using more training data. It is
interesting to explore deeper structures of the model in auto-
encoder and recursion levels. Clumpiness is another variable
which can be studied as an additive to R, F, and M (i.e. RFMC)
variables. Another pathway is considering other parameters
of user (e.g. location, age, and etc.) for automatic feature
extraction and further development of recommender systems.
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